Quantum circuits and low-degree polynomials over F2
نویسنده
چکیده
In this work we explore a correspondence between quantum circuits and low-degree polynomials over the finite field F2. Any quantum circuit made up of Hadamard, Z, controlled-Z and controlled-controlled-Z gates gives rise to a degree-3 polynomial over F2 such that calculating quantum circuit amplitudes is equivalent to counting zeroes of the corresponding polynomial. We exploit this connection, which is especially clean and simple for this particular gate set, in two directions. First, we give proofs of classical hardness results based on quantum circuit concepts. Second, we find efficient classical simulation algorithms for certain classes of quantum circuits based on efficient algorithms for classes of polynomials.
منابع مشابه
Certifying polynomials for AC0[⊕] circuits, with applications
In this paper, we introduce and develop the method of certifying polynomials for proving AC0[⊕] circuit lower bounds. We use this method to show that Approximate Majority cannot be computed by AC0[⊕] circuits of size n1+o(1). This implies a separation between the power of AC0[⊕] circuits of nearlinear size and uniform AC0[⊕] (and even AC0) circuits of polynomial size. This also implies a separa...
متن کاملCertifying polynomials for AC[⊕] circuits, with applications
In this paper, we introduce and develop the method of certifying polynomials for proving AC[⊕] circuit lower bounds. We use this method to show that Approximate Majority cannot be computed by AC[⊕] circuits of size n. This implies a separation between the power of AC[⊕] circuits of near-linear size and uniform AC[⊕] (and even AC) circuits of polynomial size. This also implies a separation betwe...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملPartial proof of Graham Higman's conjecture related to coset diagrams
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016